PG电子计算机工作原理(CPU、存储、内存、读写)

  新闻资讯     |      2024-04-22 03:53

  PG电子计算机工作原理(CPU、存储、内存、读写)冯·诺依曼为改善早期计算器手动接线来控制计算的方式,提出了“存储程序”的概念,将指令以二进制代码的形式事先输入计算机的主存储器,然后按其在存储器中的首地址执行程序的第一条指令,以后就按该程序的规定顺序执行其他指令,直至程序执行结束。早期冯·诺依曼计算机结构的特点是以运算器作为核心,数据的输入输出都是由运算器进行中转,为了提高计算机的效率,现代计算机以存储器作为核心。

PG电子计算机工作原理(CPU、存储、内存、读写)(图1)

  •运算器,是计算机的运算单元,用于算术运算和逻辑运算,运算器的核心单元是算术逻辑单元(ALU)

  •辅助存储器即外存储器,协助主存储器记忆更多的信息,辅助存储器的信息需要导入到主存储器中,才可以被CPU访问

  CPU包含运算器与,通过控制线来告诉运算器接下来要进行什么样的运算,另外也会控制主存储器的读写以及输入输出设备的开启与停止,主存储器与CPU之间会进行数据的交换,数据包括需要进行基础运算的的数据以及指令,这些指令会放到中来解析这些指令的含义,并且发出相应的控制信号,I/O设备也会直接的与主存储器进行数据的交换,这大致就是现代计算机运行的主要步骤。

  •CPU,即中央处理器,是一台计算机的运算核心和控制核心。其功能主要是解释计算机指令以及处理计算机软件中的数据。CPU由运算器、、寄存器、高速缓存及实现它们之间联系的数据、控制及状态的总线构成

  •操作控制。一条指令的功能往往是由若干操作信号的组合来实现的。CPU管理并产生由内存取出的每条指令的操作信号,把各种操作信号送往相应的部件从而控制这些部件按指令的要求进行动作PG电子(中国)官方网站

  •ALU算术逻辑单元(Arithmetic&logical Unit):是中央处理器(CPU)的执行单元,是所有中央处理器的核心组成部分,由And Gate(与门)和OrGate(或门)构成的算术逻辑单元,主要功能是进行二位元的算术运算,如加减乘(不包括整数除法)。基本上,在所有现代CPU体系结构中,二进制都以补码的形式来表示。

  •暂存寄存器:用于暂存从主存读来的数据,这个数据不能存放在通用寄存器中,否则会破坏其原有内容。

  •程序状态字寄存器(PSW):保留由算术逻辑运算指令或测试指令的结果而建立的各种状态信息,如溢出标志(OP)、符号标志(SF)、零标志(ZF)、进位标志(CF)等。PSW中的这些位参与并决定微操作的形成。

  •程序计数器( PC ):用于指出下一条指令在主存中的存放地址。CPU就是根据PC的内容去主存中取指令的。因程序中指令通常是顺序执行的,所以PC有自增功能。

  •指令寄存器(IR):存放当前需要执行的指令,与CPU内部总线相连,指令包括操作码OP和地址码Ad。

  指令译码器(ID):通过译码器可知当前执行的是什么指令,输入信号为操作码,输出信号为微操作信号,将指令转化为对应微操作。

  •微操作信号发生器:产生控制整个计算机系统所需的信号,输入信号是指令译码器的输出结果,根据翻译后的微操作执行具体的微操作。微操作信号发生器会根据指令译码器、时序系统和标志位、PSW寄存器的内容执行微操作。

  •存储器地址寄存器(MAR):用于存储所要访问的主存单元的地址,一端连接CPU内部总线,一端连接地址总线。

  •存储器数据寄存器(MDR):用于存储向主存写入的信息或从主存读出的信息,一端连接CPU内部总线,一端连接数据总线PG电子(中国)官方网站

PG电子计算机工作原理(CPU、存储、内存、读写)(图2)

  一般将运算器和集成到同一个芯片上,称为中央处理器(CPU)。CPU和主存储器共同构成主机。CPU和内存之间通过一组总线相连,总线组信号线。MAR中的地址信息会直接送到地址线上,用于指向读/写操作的主存存储单元;控制线中有读/写信号线,指出数据是从CPU写入主存还是从主存读出到CPU,根据是读操作还是写操作来控制将MDR中的数据是直接送到数据线上还是将数据线上的数据接收到MDR中。

PG电子计算机工作原理(CPU、存储、内存、读写)(图3)

PG电子计算机工作原理(CPU、存储、内存、读写)(图4)

  高速缓冲存储器(Cache):存放正在执行的程序段和数据;容量小,价格高,速度快;集成于CPU

  辅存:存放暂时不用的数据、程序或永久性保存的信息;不能与CPU交换信息,辅存中的内容只有调入主存才可被CPU访问

  主存-辅存(解决存储系统容量问题):将主存与辅存的一部分通过软/硬结合的技术组成虚拟存储器,他的更新是由硬件和操作系统进行控制的

  半导体存储器(如:主存、Cache)、磁表面存储器(如:磁盘、磁带以及机械硬盘等)、光存储器(如:光盘)

  随机存储器(RAM)(其任何一个存取单元的内容都可随机存取,存取时间与物理位置无关),顺序存取存储器(SAM)(如:磁带),直接存取存储器(DAM)(如:磁盘)(其直接选取信息所在区域(随机存取,在区域内顺序查找)),相联存储器(CAM)(如:快表)(他是按照内容来检索物理信息)

  读/写存储器(如:内存,硬盘等)(可读写),只读存储器(ROM)(如:电影使用的光碟)(只可随机读入信息,不可写入,存取方式为随机存取)

PG电子计算机工作原理(CPU、存储、内存、读写)(图5)

  主存储器是由存储体、MAR和MDR组成的。现代计算机的主存由半导体集成电路组成。驱动器、译码器和读写电路均制作在存储芯片内,而MAR和MDR制作在CPU芯片内。存储芯片和CPU芯片可以通过总线连接。

  当要从主存中读出某一信息字时,首先由CPU将该字地址送到MAR,经地址总线送到主存,然后发出读命令PG电子(中国)官方网站。主存接到读命令之后,得知需要将该地址单元的内容读出,便完成读操作,将该单元的内容读至数据总线上,至于该信息由MDR送到什么地方,由CPU决定。若要向主存存入一个信息字时,首先CPU将该字所在主存单元的地址经MAR送到地址总线,并将该信息字送入MDR,然后向主存发出写命令,主存接到写命令后,便将数据线上的信息写入到对应地址线指出的主存单元中。

  “I/O”就是“输入/输出” (Input/Output) I/O 设备就是可以将数据输入到计算机,或者可以接收计算机输出数据的外部设备。

  I/O接口: 又称I/O( I/O Controller)、设备,负责协调主机与外部设备之间的数据传输。

  I/O接口多种多样,也会制定相应的标准,如:用于控制USB设备的I/O接口、用于控制SATA3.0硬盘的I/O接口等(I/O就是一块芯片,常被集成在主板上)。

PG电子计算机工作原理(CPU、存储、内存、读写)(图6)

PG电子计算机工作原理(CPU、存储、内存、读写)(图7)

  I/O软件的主要任务是,将用户编制的程序(或数据)输入主机内;将运算结果输送给用户;实现输入输出系统与主机的协调等。通常采用 I/O 指令和通道指令实现 CPU 与I/O设备的信息交换。

  程序中断方式引入了中断机制,程序中断是指在计算机执行现行程序的过程中,出现某些急需处理的异常情况或特殊请求,CPU暂时中止现行程序,而转去对这些异常情况或特殊请求进行处理。处理完毕后CPU自动返回到现行程序的断点处,继续执行原程序。

  这种方式如果对于快速 I/O设备,如“磁盘”,每准备好一个字就给CPU发送一次中断请求,会导致CPU需要花大量的时间来处理中断服务程序,CPU利用率严重下降。

PG电子计算机工作原理(CPU、存储、内存、读写)(图8)

  ****控制方式主存与高速I/O设备之间有一条直接数据通路(DMA总线)。由于DMA方式传送数据不需要经过CPU,因此不必中断现行程序,I/O与主机并行工作,程序和传送并行工作。这种情况下DMA传送速度快,CPU和外设并行工作,提高了系统效率。

PG电子计算机工作原理(CPU、存储、内存、读写)(图9)

  有的商用中型机、大型机可能会接上很多的I/0设备,如果都让CPU来管理,那么CPU效率过低,这时就引入了通道控制方式。通道可以理解为是“低级版的CPU”,可以识别并执行一系列通道指令,通道指令种类、功能通常比较单一,通过IO指令启动通道,通道执行通道指令序列,通道程序放在主存中。